Previous Year CBSE Problems with Solutions

Problem 1:

One kind of cake requires 200 g of flour and 25 g of fat, another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat, assuming that there is no shortage of the other ingredients used in making the cakes. Make it an LPP and solve it graphically.

Solution:

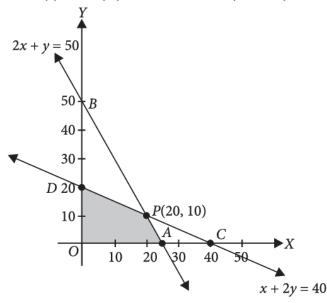
7. Let *x* be the number of cakes of I kind and *y* be the number of cakes of II kind.

	Flour	Fat
Cake I	200 g	25 g
Cake II	100 g	50 g
Availability	5 kg	1 kg

The required LPP is

Maximise Z = x + y subject to constraints

$$200x + 100y \le 5{,}000 \implies 2x + y \le 50$$


$$25x + 50y \le 1,000 \implies x + 2y \le 40$$

$$x \ge 0, y \ge 0$$

To solve LPP graphically, we convert inequations into equations.

$$2x + y = 50$$
 ...(i), $x + 2y = 40$...(ii)

Lines (i) and (ii) intersect at P(20, 10).

Shaded region is the feasible region *i.e.* OAPD. The corner points of the feasible region are O(0, 0), A(25, 0), P(20, 10), D(0, 20).

Corner Points	Value of $Z = x + y$
O(0, 0)	0
A(25,0)	25
P(20, 10)	30 (Maximum)
D(0, 20)	20

Clearly, the number of cakes is maximum at P(20, 10) *i.e.*, when 20 cakes of I kind and 10 cakes of II kind are made.